12 research outputs found

    Analysis of partial diffusion LMS for adaptive estimation over networks with noisy links

    Get PDF
    In partial diffusion-based least mean square (PDLMS) scheme, each node shares a part of its intermediate estimate vector with its neighbors at each iteration. In this paper, besides studying the general PDLMS scheme, we figure out how the noisy links deteriorate the network performance during the exchange of weight estimates. We investigate the steady state mean square deviation (MSD) and derive a theoretical expression for it. We also derive the mean and mean-square convergence conditions for the PDLMS algorithm in the presence of noisy links. Our analysis reveals that unlike the PDLMS with ideal links, the steady-state network MSD performance of the PDLMS algorithm is not improved as the number of entries communicated at each iteration increases. Strictly speaking, the noisy links condition imposes more complexity to the MSD derivation that has a noticeable effect on the overall performance. This term violates the trade-off between the communication cost and the estimation performance of the networks in comparison with the ideal links. Our simulation results substantiate the effect of noisy links on PDLMS algorithm and verify the theoretical findings. They match well with theory

    Partial diffusion Kalman filter with adaptive combiners

    Get PDF
    Adaptive estimation of optimal combination weights for partial-diffusion Kalman filtering together with its mean convergence and stability analysis is proposed here. The simulations confirm its superior performance compared with the existing combiners. Sensor networks with limited accessible power highly benefit from this design

    Demonstration of Universal Parametric Entangling Gates on a Multi-Qubit Lattice

    Get PDF
    We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gateset for a linear array of four superconducting qubits. An average process fidelity of F=93%\mathcal{F}=93\% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a four-qubit maximally entangled state and comparing the estimated state fidelity against the expected performance of the individual entangling gates. In addition, we prepare an eight-qubit register in all possible bitstring permutations and monitor the fidelity of a two-qubit gate across one pair of these qubits. Across all such permutations, an average fidelity of F=91.6±2.6%\mathcal{F}=91.6\pm2.6\% is observed. These results thus offer a path to a scalable architecture with high selectivity and low crosstalk
    corecore